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 Air pollution in open-pit mining areas poses significant environmental 
and health risks, with particulate matter (PM10) being one of the most 
critical pollutants. Accurate forecasting of PM10 concentrations is 
essential for real-time air quality management and dust mitigation 
strategies. This study develops a machine learning-based framework for 
PM10 prediction at the Sin Quyen open-pit copper mine, leveraging 
advanced feature engineering, Principal Component Analysis (PCA), and 
Synthetic Minority Over-sampling technique for Regression (SMOGN) to 
enhance model accuracy. Six forecasting models were evaluated, 
including Random Forest (RF-PM10Hybrid), XGBoost, LightGBM, ARIMA, 
SARIMA, and Holt-Winters exponential smoothing. The results indicate 
that machine learning models significantly outperform traditional time-
series models with RMSE of 5.791, 8.293, 6.172, 4.233, 11.070, 13.108; 
MAE of 3.518, 3.953, 3.770, 4.208, 8.800, 10.224; MAPE of 11.70%, 
13.18%, 12.57%, 14.03%, 29.32%, 34.07% for the RF-PM10Hybrid, 
XGBoost, LightGBM, ARIMA, SARIMA, Holt-Winters, respectively. RF-
PM10Hybrid achieved the best forecasting performance, with the lowest 
RMSE (5.791) and MAE (3.518) on the testing dataset, followed by 
LightGBM and XGBoost. Conversely, statistical models (ARIMA, SARIMA, 
and Holt-Winters) exhibited higher forecasting errors, making them less 
suitable for predicting PM10 variations in open-pit mining environments. 
Key methodological advancements include the integration of lag features, 
rolling statistics, and interaction terms, which improved the ability of ML 
models to capture PM10 dynamics. SMOGN was applied to balance the 
dataset, ensuring better representation of high- PM10 events. The findings 
demonstrated that machine learning-based approaches, particularly RF-
PM10Hybrid, provide a reliable tool for real-time PM10 forecasting, 
supporting proactive dust control, regulatory compliance, and 
sustainable mining operations.  
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1. Introduction 

Open-pit mining operations generate 
significant amounts of airborne pollutants, 
particularly particulate matter (PM), due to 
activities such as drilling, blasting, material 
handling, transportation, and excavation. Among 
these pollutants, PM10 (particulate matter ≤10 
µm) is of particular concern due to its ability to 
remain suspended in the atmosphere for 
extended periods and travel over long distances, 
which can penetrate the respiratory system and 
cause significant health and environmental 
impacts. Unlike larger particles, PM10 can 
penetrate deep into the human respiratory 
system, leading to severe respiratory and 
cardiovascular diseases. According to the national 
air quality standard QCVN 05:2023/BTNMT 
(Vietnam), the permissible annual average 
concentration of PM₁₀ is 50 µg/m³, and the 24-
hour average permissible limit is 150 µg/m³. 

From an environmental perspective, PM10 
pollution contributes to atmospheric haze, soil 
contamination, and water pollution through 
particle deposition. Fine dust particles can 
accumulate in surrounding agricultural lands, 
reducing crop productivity and altering soil 
composition. Additionally, PM10 emissions affect 
local ecosystems by degrading air quality and 
disrupting wildlife in mining regions. 

The primary sources of PM₁₀ in open-pit 
mining operations, including blasting activities, 
material handling, haul truck movements, wind 
erosion from exposed surfaces, and crushing 
processes. For mine operations, excessive PM10 
levels can lead to regulatory fines, reduced 
worker productivity, increased equipment 
maintenance costs, and reputational damage. 
Many countries have imposed strict air quality 
regulations requiring mines to monitor and 
control dust emissions effectively. Failure to 
comply with these standards can result in mine 
shutdowns or production halts, significantly 
impacting operational efficiency and profitability. 

Given the severe consequences of PM10 
pollution, real-time air quality forecasting has 
become a critical tool for mine operators to 
mitigate health risks, enhance environmental 
compliance, and improve operational efficiency. 

Traditional dust control strategies react to 
high PM10 levels only after they exceed regulatory 
limits. However, real-time forecasting enables a 
proactive approach, allowing mine operators to 
anticipate dust concentration trends and take 
preventive actions before levels become 
hazardous. The importance of PM₁₀ forecasting is 
timely prediction of PM₁₀ concentrations allows 
mine operators to implement dust suppression 
measures proactively (e.g., water spraying, 
operational scheduling), contributing to 
environmental compliance, worker health 
protection, and sustainable mining operations. 

In this study, we develop and evaluate a 
hybrid machine learning model (RF-PM10Hybrid) 
to improve PM10 forecasting in open-pit mining. 
By integrating feature engineering, 
dimensionality reduction (PCA), and imbalanced 
data handling (SMOGN) into Random Forest, this 
model enhances forecasting accuracy and 
robustness. A real-world case study is conducted 
at Sin Quyen Copper Mine, Vietnam, to validate 
the model’s effectiveness in improving real-time 
PM10 predictions and supporting data-driven 
mine management strategies. 

Traditional time-series models such as 
AutoRegressive Integrated Moving Average 
(ARIMA) and Seasonal AutoRegressive Integrated 
Moving Average (SARIMA) have been widely used 
for air pollution forecasting due to their ability to 
capture temporal dependencies and seasonal 
patterns. However, when applied to complex, 
dynamic environments like open-pit mines, these 
models exhibit several critical limitations: 

a) Inability to capture non-linear 
relationships 

- PM10 concentration is influenced by multiple 
meteorological and operational factors, including 
wind speed, temperature, humidity, atmospheric 
pressure, and mining activities. 

- ARIMA and SARIMA assume linear 
relationships in the data, making them ineffective 
for capturing non-linear interactions between 
these factors. 

b) Poor handling of sudden variations in PM10 
levels 

- Blasting, excavation, and haul truck 
movements can cause sharp spikes in PM10 levels, 
which traditional models fail to predict accurately. 
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- SARIMA can model seasonal variations, but 
it struggles to adapt to sudden short-term 
fluctuations, leading to high forecasting errors 
during critical dust events. 

c) Limited performance with small, noisy 
datasets 

- Time-series models require stationary data 
(constant mean and variance), but PM10 levels 
fluctuate significantly due to changing weather 
conditions and mining schedules. 

- Data pre-processing techniques such as 
differencing can help stabilize variance, but they 
also remove valuable trend information, affecting 
prediction accuracy. 

d) Lack of multi-feature learning capability 
- ARIMA and SARIMA rely only on past values 

of PM10 (univariate approach), ignoring external 
meteorological and operational data. 

- A multi-feature approach (incorporating 
meteorological factors) is necessary to improve 
forecasting accuracy, but traditional models lack 
this capability. 

To overcome these limitations, hybrid 
machine learning (ML) models have emerged as a 
powerful alternative for PM10 forecasting in open-
pit mining. The combination of statistical, feature 
engineering, and ML-based approaches provides 
significant advantages over traditional models, 
specifically: 

a) Machine learning models can capture 
complex relationships 

- ML models such as Random Forest (RF), 
XGBoost, and LightGBM can learn from multiple 
meteorological and operational factors, capturing 
both linear and non-linear dependencies. 

- Feature engineering techniques (e.g., lag 
features, rolling statistics, interaction terms) 
further enhance ML model interpretability and 
accuracy. 

b) Hybrid models leverage the strengths of 
both ML and time-series approaches 

- Traditional models (e.g., SARIMA) handle 
seasonal trends well but fail with complex feature 
interactions. 

- ML models learn multi-feature 
dependencies but struggle with sequential data 
patterns. 

- A hybrid approach combines the best of 
both worlds, ensuring accurate short-term and 
long-term PM10 forecasts. 

c) Imbalanced data handling with SMOGN 
improves prediction of extreme PM10 events 

- Extreme PM10 events (high pollution peaks) 
are rare but critical for mine safety and regulation 
compliance. 

- Traditional models often underpredict 
extreme values due to data imbalance. 

- SMOGN (Synthetic Minority Over-sampling 
for Regression) generates synthetic samples to 
improve model learning on rare events, ensuring 
better performance in forecasting high PM10 
levels. 

d) Dimensionality reduction (PCA) enhances 
model efficiency 

- PM10 forecasting models require multiple 
input variables, but too many features can lead to 
overfitting and increased computational cost. 

- Principal Component Analysis (PCA) 
reduces feature dimensionality while retaining 
important variance, optimizing model 
performance. 

Thus, this study introduces RF-PM10Hybrid, a 
hybrid Random Forest-based model that 
integrates advanced feature engineering, PCA, 
and SMOGN to overcome the limitations of 
traditional forecasting methods. The proposed 
approach is evaluated through a case study at Sin 
Quyen Copper Mine, Vietnam, demonstrating its 
effectiveness in real-time air quality forecasting. 
The key contributions of our study include: 

- RF-PM10Hybrid model: Integrates RF with 
feature engineering, PCA, and SMOGN for PM10 
forecasting. 

- Advanced feature engineering: Includes lag 
features, rolling statistics, and interaction terms. 

- Dimensionality reduction (PCA): Reduces 
computational cost while maintaining 90% 
variance. 

- Handling data imbalance (SMOGN): 
Improves prediction of extreme PM10 levels. 

- Comparative model evaluation: 
Benchmarks RF-PM10Hybrid against XGBoost, 
LightGBM, ARIMA, SARIMA, Holt-Winters. 

- Real-world application: Validates model 
performance at Sin Quyen Copper Mine, Vietnam. 

2. Literature review and principle of machine 
learning models 

2.1. Literature review
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Air pollution forecasting, particularly PM10 
prediction, has been extensively studied using 
both traditional time-series models and machine 
learning approaches. Each method has its 
strengths and limitations, leading to the need for 
hybrid models that leverage the advantages of 
both. 

For forecasting PM10, Sumanth et al. (2020) 
modelled PM10 dispersion in coal mines using the 
AERMOD model and evaluates the effects of 
different digital elevation models (DEMs) on 
dispersion predictions. The authors compared 
multiple DEMs (SRTM, ASTER, CartoDEM) for 
terrain representation and assessed their effects 
on PM10 dispersion predictions. They evaluated 
the performance of AERMOD using Willmott’s 
Index of Agreement and other performance 
metrics. The study found that overburden dumps, 
haulage routes, and railway sidings contributed 
the most to PM10 emissions. Using more recent 
DEMs improved model performance. 

In another study, Sánchez Lasheras et al. 
(2020) compared different machine learning 
models for forecasting PM10 concentrations in a 
port area using historical air quality data. The 
authors used various models, including ARIMA, 
Vector Autoregressive Moving Average (VARMA), 
Multilayer Perceptron (MLP), Support Vector 
Machines for Regression (SVMR), and 
Multivariate Adaptive Regression Splines (MARS). 
The best short-term forecasts (1 month ahead) 
were achieved using SVMR, while MLP performed 
best for longer-term forecasts (6 months ahead). 
ARIMA was found to be less effective than ML 
models for long-term forecasting. This paper 
provides strong evidence that ML models 
outperform traditional statistical methods for air 
quality forecasting. 

Török et al. (2023) also applied various 
machine learning models, including Random 
Forest, Gradient Boosting, and Neural Networks, 
to predict PM10 concentrations in an industrial 
region. They found that Gradient Boosting models 
performed best, highlighting the importance of 
ensemble learning. Feature importance analysis 
showed that meteorological factors significantly 
impact PM10 levels. 

Time-series forecasting models such as 
AutoRegressive Integrated Moving Average 
(ARIMA), Seasonal ARIMA (SARIMA), and Holt-

Winters Exponential Smoothing have been widely 
used for predicting PM2.5 and PM10 
concentrations (Pozza et al., 2010; Bhatti et al., 
2021; da Silva et al., 2023). These methods rely 
solely on historical PM10 values to identify 
temporal patterns and project future trends. 

In Vietnam, the importance of air quality 
monitoring and dust control in open-pit mines has 
also been recognized. In 2018, a research team 
from Hanoi University of Mining and Geology 
(HUMG) led by Prof. Dr. Bui Xuan Nam 
collaborated with Dong-A University (Korea) to 
develop an air quality control system for deep 
open-pit coal mines in Quang Ninh Province, 
under the sponsorship of a bilateral international 
cooperation research project funded by the 
Ministry of Education and Training (Bui, 2021). 
The study selected three representative mines-
Deo Nai, Cao Son, and Coc Sau-for assessing air 
quality and proposing effective dust control 
measures. This work laid the foundation for air 
quality monitoring and management in deep 
open-pit mines in Vietnam, yielding promising 
and practical results. These early initiatives have 
highlighted the necessity for developing 
predictive models to support real-time dust 
control strategies in Vietnamese mining 
operations. However, this study has not applied 
AI-based models for forecasting air quality in 
these mines. Furthermore, the air quality in the 
open-pit coal mines are different from the open-
pit copper mine. 

To address the limitations of traditional 
models, machine learning (ML) methods such as 
Random Forest (RF), XGBoost, and LightGBM 
have been widely adopted for PM10 forecasting. 
These models offer higher accuracy and 
adaptability by learning complex relationships 
between multiple meteorological and 
environmental factors. 

2.2. Random Forest (RF) 

Random Forest is an ensemble learning 
method that combines multiple decision trees to 
improve accuracy and reduce overfitting (Fratello 
and Tagliaferri, 2018; Halabaku and Bytyçi, 
2024). It works by bootstrapping with randomly 
selecting subsets of data for training multiple 
trees. Then, it applies feature splitting and finding 
optimal split points for decision-making. Finally, it 



52 Ngoc Tuan Le et al./Journal of Mining and Earth Sciences 66 (4), 48 - 69  

conducts aggregation (voting for 
classification/averaging for regression) by 
combining predictions from multiple trees to 
improve generalization. 

The main advantages of RF include handles 
non-linear dependencies between PM10 and 
meteorological factors (temperature, humidity, 
wind speed, etc.), works well with high-
dimensional data and selects important features 
automatically, and robust against overfitting due 
to averaging across multiple trees. 

However, the limitations of RF including 
slower in training compared to single-tree models 
and feature importance may be biased toward 
variables with more levels (e.g., categorical 
variables) (Hegelich, 2016). 

Why RF is chosen as the core model in RF-
PM10Hybrid? Because RF is highly interpretable, 
making it suitable for environmental applications 
(Wang et al., 2021; Simon et al., 2023). Moreover, 
it can be easily combined with PCA and SMOGN to 
improve forecasting accuracy. It also performs 
well with multi-variable inputs (meteorological 
and operational features). 

2.3. XGBoost (Extreme Gradient Boosting) 

XGBoost is a gradient boosting algorithm that 
iteratively improves prediction accuracy by 
training decision trees sequentially, minimizing 
loss using gradient descent optimization, and 
applying regularization (L1 & L2) to prevent 
overfitting (Asselman et al., 2023; Sibindi et al., 
2023; Kavitha and Priyadharshini, 2024). 

The main advantages of XGBoost including 
fast and optimized for large datasets, effective in 
handling missing values and imbalanced data, and 
better generalization compared to individual 
decision trees. 

Nevertheless, the limitations of XGBoost 
including high computational cost compared to 
simpler models and sensitive to hyperparameter 
tuning, requiring optimization for best results. 

2.4. LightGBM (Light Gradient Boosting 
Machine) 

LightGBM is an optimized version of XGBoost, 
designed for faster training and lower memory 
usage. Instead of growing trees depth-first, 

LightGBM splits leaf nodes first, allowing faster 
training speeds, making it ideal for real-time 
applications, handling large datasets with 
minimal memory consumption, and efficient 
feature selection, focusing on the most important 
variables (Zhang and Gong, 2020, Wang et al., 
2025). 

Main advantages of LightGBM include up to 
10x faster than XGBoost while maintaining 
similar accuracy and performs well on 
imbalanced datasets with appropriate tuning. 

However, the limitations of LightGBM include 
more prone to overfitting compared to Random 
Forest and less interpretable than RF, making it 
harder to explain model decisions. 

2.5. Limitations and solutions in this study 

Despite significant advancements in PM10 
forecasting using both traditional time-series 
models and machine learning methods, several 
challenges remain when applying these 
approaches in open-pit mining environments. 
These challenges include ineffective handling of 
seasonal variations, difficulty in capturing 
temporal dependencies, and bias due to class 
imbalance in PM10 data. 

In open-pit mining, PM10 concentrations are 
influenced by cyclic operational and 
meteorological patterns, including daily 
variations in mining activity levels (e.g., shifts, 
blasting schedules), seasonal weather effects (e.g., 
winter humidity reducing dust, dry summers 
increasing airborne particles), and wind direction 
changes across different seasons affecting dust 
dispersion. 

In addition, time-series forecasting requires 
understanding the relationships between past 
PM10 values and future trends. However, standard 
machine learning models like RF, XGBoost, and 
LightGBM are not inherently designed for 
sequential data. 

Furthermore, PM10 data in mining 
environments is often highly imbalanced, with 
long periods of low pollution levels and 
infrequent but critical high-concentration events 
(e.g., post-blasting or dry season spikes). The 
limitations and solutions in this study are 
summarized in Table 1.
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3. Methodology 

3.1. Study area and dataset 

The Sin Quyen Copper Mine, located in Lao 
Cai Province, Vietnam, is one of the largest open-
pit copper mines in the region. Operated by 
Vietnam National Coal and Mineral Industries 
Group (VINACOMIN), the mine produces 
significant amounts of dust due to blasting, 
excavation, material transportation, and ore 
processing activities. 

To monitor air quality and environmental 
conditions, an air quality monitoring system was 
deployed and strategically placed at +102 m to 
capture variations in PM10 levels influenced by 
mining operations and meteorological conditions. 
The system continuously recorded particulate 
matter (i.e., PM10) concentrations along with key 
meteorological variables. It should be noted that 
due to the impacts of all operations in the mine, 
the surrounding air quality may be affected, and 
therefore, we selected this place (i.e., +102 m) on 
the surface of the mine to evaluate the pollution of 
PM10 on the surrounding environment. 

The dataset used in this study was collected 
from April 10, 2024, to September 30, 2024, 
covering a period of nearly six months. During this 
time, measurements were taken at different 
timestamps (1 min, 2 min, 3 min, and 4 min 
intervals), resulting in a high-resolution dataset 
suitable for short-term PM10 forecasting. The raw 
data underwent preprocessing and resampling to 
ensure uniform hourly intervals, facilitating 
effective model training and evaluation. 

In this study, the PM10 forecasting models will 
be developed based on data from a fixed air 
quality monitoring station installed at a 
representative location within the Sin Quyen 
open-pit copper mine. Although only one station 
was used, it captures the major dust emissions 
and air quality variations related to mining 
operations across the site. 

The dataset consists of six key variables, 
including meteorological factors and PM10 
concentrations, which are critical for accurate air 
quality forecasting. These variables are 
summarized in Table 2. 

Table 1. Summary of limitations & solutions in this study. 

Limitation Issues in existing models Proposed solutions 
Seasonal trends poorly 
captured 

ARIMA, SARIMA struggle with 
irregular mining activity 

Time-based features + rolling 
statistics in RF-PM10Hybrid 

Static ML models fail to learn 
time dependencies 

RF, XGBoost, LightGBM treat 
data as independent 
observations 

Adding lag features + rolling 
statistics to ML models 

Imbalanced PM10 distribution 
leads to bias 

ML models underpredict 
extreme PM10 levels 

Applying SMOGN for synthetic 
minority oversampling 

 
Table 2. Description of variables used in forecasting. 

Variable Unit Description 

Humidity % Relative humidity of the air, affecting dust suspension and 
dispersion. 

Temperature °C Ambient air temperature, influencing dust settling rates. 

Pressure Pa Atmospheric pressure, affecting air density and dust transport. 

Wind Direction Degrees (°) Direction from which the wind is blowing, influencing dust 
movement. 

Wind Speed m/s Speed of the wind, impacting the rate of PM10 dispersion. 

PM10 (dust10) µg/m³ Concentration of particulate matter ≤10 µm in diameter, 
representing air quality. 
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These variables play a crucial role in PM10 
concentration forecasting, as dust dispersion is 
highly dependent on meteorological conditions. 
Wind speed and direction significantly impact the 
spread and accumulation of dust particles, while 
humidity and temperature influence the rate of 
dust suspension and deposition. Table 3 presents 

the statistical indexes of the dataset collected in 
this study. 

Given the variability in time intervals in the 
raw dataset, all data was resampled to hourly 
intervals using linear interpolation, as shown in 
Figure 1. This step ensures a consistent temporal 
resolution, making it suitable for training the 
hybrid machine learning models.

Table 3. Summary of statistical indexes of the dataset. 

 Humidity Temperature Pressure Wind direction Wind speed PM10 
count 137761 137761 137761 137761 137761 137761 
mean 72.110 29.334 99836.455 59.774 2.524 37.541 
std 16.043 9.161 501.567 52.687 2.938 547.185 
min 21 17.5 98373 0 0 -32768 
25% 60 18.204 99421 11.42 0.71 9 
50% 74 32 99859 47.446 1.29 30 
75% 88.798 35.8 100329.6 102 3.421 41 
max 99 50.1 100741 255 37.23 32000 

 

Figure 1. Location of study area and hourly intervals of PM10 collected in this study. 



 Ngoc Tuan Le et al./Journal of Mining and Earth Sciences 66 (4), 48 - 69 55 

3.2. Data preprocessing and feature 
engineering 

Effective data preprocessing and feature 
engineering are crucial for improving the 
accuracy and robustness of PM10 forecasting 
models. This study employs multiple 
preprocessing techniques to handle missing 
values, create lag features, capture short-term 
trends, and generate interaction terms that 
enhance the predictive power of the RF-
PM10Hybrid model. 

3.2.1. Handling negative values 

Based on the summary statistics of the 
dataset in Table 3, we can see that the average 
humidity is 72.1%, ranging from 21% to 100%; 
The mean temperature is 29.30C, with a minimum 
of 17.50C; The average atmospheric pressure is 
99836 Pa, with a minimum value of 98373 Pa; The 
mean wind direction is 59.77°, spanning from 00 
to 3600, and the average wind speed is 2.52 m/s, 
with some instances showing 0 m/s. Critical 
observations for PM10 concentration were also 

observed with nean PM10 concentration of 37.54 
µg/m³, which appears reasonable. The standard 
deviation of 547.18 µg/m³, indicating a very high 
level of dispersion in the data. Minimum value of -
32,768 µg/m³, which is clearly an erroneous value 
that needs to be corrected. The 25th percentile 
(Q1) of 9 µg/m³, meaning 25% of the data has 
PM10 concentrations lower than this threshold, 
and finally, the maximum value is extremely high, 
suggesting possible outliers due to mining 
explosions. 

Remarkably, the massive standard deviation 
and the presence of negative values (-32,768) 
suggest sensor errors, data corruption, or 
incorrect data entries. Therefore, the handling 
negative values should be handled before 
developing AI-based models for forecasting PM10 
in this study. 

After checking the dataset, the number of 
negative PM10 values is 38 in the whole dataset, as 
shown in Figure 2. These values may be due to 
sensor errors, thus these negative values were 
replaced to zero, and the dataset after handling 
negative values is shown in Figure 3.

 
Figure 2. Negative PM10 values before handling. 
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3.2.2. Handling missing values and replacing zero 
values with the median 

The raw dataset contains PM10 (dust10) and 
meteorological variables collected at varying time 

intervals (1 min, 2 min, 3 min, and 4 min). Before 
model training, the dataset was resampled to 
hourly intervals using linear interpolation to 
ensure uniformity, as shown in Figure 4.

 
Figure 3. Negative PM10 values after handling. 

 
Figure 4. PM10 data before handling missing and zero values. 
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To resampling to hourly intervals, linear 
interpolation was used to fill missing timestamps. 

For missing meteorological data, missing 
values in humidity, temperature, pressure, wind 
direction, and wind speed were filled using 
nearest neighbor interpolation. 

For missing PM10 values, missing dust 
concentrations were filled using the median value 
of the surrounding time steps to avoid extreme 
fluctuations. 

In mining environments, zero PM10 values are 
unrealistic and typically result from sensor errors 
or faulty data transmission. Zero PM10 values 
were replaced with the median of the dataset to 
maintain data integrity without introducing bias. 
Finally, zero values in dust10 replaced with the 
median of the entire dataset, and non-zero 
missing values were filled using linear and 
nearest-neighbor interpolation. 

By addressing missing and zero values, the 
dataset was cleaned and prepared for feature 
extraction, ensuring that the model learned from 
accurate and representative data, as shown in 
Figure 5. 

3.2.3. Generating lag features (PM10 values from 
previous hours) 

PM10 levels are strongly influenced by 
historical concentrations, as pollution trends 
follow temporal patterns. To help the model learn 
these dependencies, lag features were introduced. 

In this study, lag features are important, as 
PM10 levels at a given hour depend on previous 
concentrations, and including past PM10 values 
as input features allows the model to recognize 
short-term trends. 

For each time step (t), the following lag 
features were generated: lag_1: PM10 
concentration at t-1 hour. lag_2: PM10 
concentration at t-2 hours. lag_3: PM10 
concentration at t-3 hours. lag_4: PM10 
concentration at t-4 hours. lag_5: PM10 
concentration at t-5 hours. lag_6: PM10 
concentration at t-6 hours. These lagged features 
enable the model to identify temporal 
dependencies, making it more effective in 
capturing trends in PM10 levels. 

 
Figure 5. PM10 data after handling missing and zero values. 
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3.2.4. Rolling statistics (mean, standard deviation) 
to capture short-term trends 

In addition to lag features, rolling window 
statistics were used to model short-term 
variations in PM10 levels, because PM10 
fluctuations occur due to changes in wind speed, 
humidity, and mining activities, averaging over 
short time periods reduces noise and improves 
trend identification, and standard deviation 
measures volatility, helping the model detect 
periods of sudden PM10 increases. 

For each time step (t), the following rolling 
statistics were computed: Rolling mean (5-hour 
window): Average PM10 levels over the past 5 
hours. Rolling standard deviation (5-hour 
window): Variability of PM10 over the past 5 
hours. These strategies are calculated using Eqs. 
(1) and (2) as follow. 

 𝑅𝑜𝑙𝑙𝑖𝑛𝑔𝑚𝑒𝑎𝑛𝑡 =
1

𝑛
∑ 𝑃𝑀10𝑡−𝑖
𝑛−1
𝑖=0       (1) 

𝑅𝑜𝑙𝑙𝑖𝑛𝑔𝑠𝑡𝑑𝑡 =

√
1

𝑛
∑ (𝑃𝑀10𝑡−𝑖 − 𝑅𝑜𝑙𝑙𝑖𝑛𝑔𝑚𝑒𝑎𝑛𝑡)

2𝑛−1
𝑖=0                (2) 

Where n = 5 (rolling window size). 
By including these rolling statistics, the model 

learns from recent patterns and short-term 
fluctuations, improving its ability to predict 
sudden PM10 peaks. 

3.2.5. Interaction terms (Temperature × Humidity, 
Wind Speed × Pressure) 

PM10 concentrations are influenced by 
multiple environmental factors, and their effects 
are often non-linear. Interaction terms help 
capture these complex dependencies. This 
technique was applied in this study due to 
temperature and humidity interact to affect dust 
dispersion and particle settling rates. 
Furthermore, wind speed and pressure influence 
dust resuspension and transport across the 
mining site. 

The interaction features added to the dataset 
in this study including: 

temp_humidity = temperature × humidity: 
Aiming to measure the combined effect of 
temperature and humidity on PM10 levels. 

wind_pressure = windSpeed × pressure: 
Aiming to capture the impact of wind force and 
atmospheric conditions on dust transport. 

These interaction terms provide additional 
information to the model, enabling it to learn 
more meaningful relationships between 
environmental factors and PM10 concentrations. 

3.2.6. Compute and visualize correlation matrix 

Computing and visualizing the correlation 
matrix is a crucial step in this study for removing 
redundancy (avoids unnecessary computation), 
enhances model accuracy (by focusing on the 
most relevant features), prevents overfitting 
(ensures better generalization to new data), and 
improves interpretability (helps understand how 
environmental factors influence PM10). Figure 6 
shows the correlation matrix of the PM10 dataset 
used in this study after handling the previous 
steps. 

As shown in Figure 6, we can see that the 
variables 'temperature', 'wind_pressure', 
'rolling_std', and 'pressure' should be removed 
due to highly correlated features (> 0.8). 

3.3. Dimensionality reduction with PCA 

Feature engineering introduces a large 
number of new variables, including lag features, 
rolling statistics, and interaction terms. While 
these features enhance the predictive power of 
machine learning models, they can also introduce 
multicollinearity and increase computational 
complexity. To address this issue, Principal 
Component Analysis (PCA) is applied to reduce 
dimensionality while retaining 90% of the total 
variance. 

This step is necessary because 
multicollinearity occurs when two or more 
features are highly correlated, leading to 
redundancy in the dataset. Also, highly correlated 
features can cause overfitting, making the model 
overly dependent on specific features rather than 
learning general patterns. In addition, reducing 
correlation improves model interpretability by 
keeping only the most relevant features. 

To detect highly correlated features, the 
Pearson correlation coefficient is computed 
between all variables using Eq. (3): 

𝜌(𝑋, 𝑌) =
∑(𝑋𝑖−�̄�)(𝑌𝑖−�̄�)

√∑(𝑋𝑖−�̄�)2⋅√∑(𝑌𝑖−�̄�)2
      (3)
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Where 𝜌(𝑋, 𝑌)measures the strength of 
correlation between two features. A value greater 
than 0.8 indicates high correlation. 

To remove highly correlated features, 
compute a correlation matrix to measure 
relationships between all features. Then identify 
pairs of features with correlation > 0.8. Finally, 
keep only one feature from each highly correlated 
pair to reduce redundancy. 

Subsequently, PCA was applied to reduce 
dimensionality while retaining 90% variance. 
PCA is a widely used technique for reducing high-
dimensional datasets while preserving the most 
important patterns in the data. By transforming 
the original features into a smaller set of 
uncorrelated principal components, PCA allows 
the model to learn effectively with fewer 
variables. 

 
Figure 6. Correlation matrix of the PM10 dataset. 
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In forecasting PM10 in open-pit mines, PCA 
retains the most significant features while 
reducing dimensionality, eliminates redundancy 
from highly correlated variables, enhances 
computational efficiency for training machine 
learning models, and improves model 
generalization by reducing overfitting. 

PCA works by transforming the original 
dataset into a new coordinate system where the 
first principal component (PC1) captures the most 
variance, followed by PC2, PC3, etc. 

Mathematical representation of PCA is as 
follows: 

1. Compute the covariance matrix using Eq. 
(4): 

𝐶 =
1

𝑛
∑ (𝑋𝑖 − �̄�)(𝑋𝑖 − �̄�)𝑇𝑛
𝑖=1      (4) 

Where 𝑋 is the dataset and 𝐶 is the covariance 
matrix. 

2. Compute eigenvalues and eigenvectors 
using Eq. (5): 

𝐶𝜐 = 𝜆𝜐   (5) 

Where 𝑣 are eigenvectors (principal 
components) and 𝜆 are eigenvalues (variance 
captured by each component). 

3. Select top k components that retain 90% 
variance using Eq. (6): 

∑ 𝜆𝑖
𝑘
𝑖=1

∑ 𝜆𝑖
𝑚
𝑖=1

≥ 0.90         (6) 

Where 𝑘 is the number of principal 
components retained. 

After computing eigenvalues, we determined 
how many principal components retain 90% of 
the variance. Finally, the dataset was transformed 
from 𝑛 original features into 𝑘 principal 
components, where 𝑘 retains at least 90% 
variance. The results showed that the variance 
retained by PCA is 0.9997, and the columns in the 
training dataset include 'PC1', 'PC2', 'PC3', 'PC4', 
'PC5', 'PC6', 'PC7', 'PC8', 'PC9', 'PC10', and 'dust10' 
(PM10). 

3.4. Machine learning and time-series models 

3.4.1. Proposing the RF-PM10Hybrid model 

To improve PM10 forecasting accuracy in 
open-pit mines, we propose RF-PM10Hybrid, a 
hybrid model based on Random Forest (RF), 
enhanced by feature engineering, SMOGN 
oversampling, and PCA-based dimensionality 
reduction. The motivation for this hybrid 
approach is to leverage the robustness of Random 
Forest in handling noisy environmental data 
while addressing common challenges in air 
quality forecasting, such as class imbalance and 
temporal dependencies. 

The key components of RF-PM10Hybrid 
include: 

- Random Forest (RF): A robust ensemble 
learning method that averages multiple decision 
trees to reduce overfitting and improve 
generalization. 

- Feature engineering: 
+ Temporal features: Hour of the day, day of 

the week, and month to capture seasonal trends. 
+ Lag features: Historical PM10 values as 

predictors for future concentrations. 
+ Rolling statistics: Mean and standard 

deviation of PM10 over a 5-hour window to 
capture short-term fluctuations. 

+ Interaction features: Multiplication of 
temperature and humidity, as well as wind speed 
and pressure, to incorporate meteorological 
dependencies. 

- Dimensionality reduction (PCA): Removing 
highly correlated features (correlation > 0.8) and 
applying PCA to retain 90% of variance while 
reducing feature complexity. 

- Handling imbalanced data (SMOGN): Since 
PM10 concentration varies significantly, minority 
extreme PM10 values (high and very high levels) 
are underrepresented. We employ Synthetic 
Minority Oversampling via Gaussian Noise 
(SMOGN) to create synthetic data points in these 
underrepresented regions, leading to a more 
balanced dataset. 

The RF-PM10Hybrid model effectively 
integrates data-driven learning, feature 
transformation, and statistical balancing 
techniques, making it a robust alternative to 
traditional and boosting-based methods. The 
workflow of the RF-PM10Hybrid model is 
proposed in Figure 7.
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3.4.2. Comparison with other forecasting models 

To validate the effectiveness of RF-
PM10Hybrid, we compare its forecasting 
performance against several widely used models: 

Boosting-based machine learning models 
XGBoost: An extreme gradient boosting 

algorithm that optimizes tree-based learning 
through regularization and boosting. 

LightGBM: A fast, high-performance gradient 
boosting framework designed for large datasets. 

Traditional time-series models 
Autoregressive integrated moving average 

(ARIMA): A parametric time-series forecasting 
model that captures trends and seasonality. 

Seasonal autoregressive integrated moving 
average (SARIMA): An extension of ARIMA that 
explicitly models seasonal dependencies. 

Statistical smoothing model 
Holt-winters exponential smoothing: A 

forecasting method that applies exponential 
weights to past observations to model trends and 
seasonality. 

3.5. Performance evaluation metrics 

To assess the accuracy and reliability of the 
PM₁₀ forecasting models, we utilize three widely 

accepted performance evaluation metrics: Root 
Mean Squared Error (RMSE), Mean Absolute 
Error (MAE), and Mean Absolute Percentage 
Error (MAPE). These metrics provide insights into 
different aspects of model performance, including 
absolute error, percentage error, and error 
sensitivity to large deviations. 

RMSE is a widely used metric for regression 
problems, measuring the standard deviation of 
the residuals (prediction errors). It quantifies 
how much the predicted values deviate from the 
actual values in terms of squared differences. The 
formula for RMSE is: 

RMSE = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2
𝑛
𝑖=1   (7) 

where, 𝑦𝑖 , �̂�𝑖 and �̄�𝑖 denote the values of PM10 
for measured, predicted, and the mean of the 
measured values. 

MAE measures the average absolute 
differences between actual and predicted values. 
Unlike RMSE, it treats all errors equally without 
squaring them. The formula for MAE is: 

MAE =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|
𝑛
i=1              (8) 

 
Figure 7. Workflow of RF-PM10Hybrid for forecasting PM10 in this study. 
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MAPE measures the prediction error as a 
percentage of actual values, making it scale-
independent and useful for comparing across 
different datasets. The formula for MAPE is: 

MAPE =
100%

𝑛
∑ |

𝑦𝑖−�̂�𝑖

𝑦𝑖
|𝑛

i=1  (9) 

4. Results and discussion 

4.1. Handling imbalanced data with SMOGN 

One of the key challenges in PM10 forecasting 
in open-pit mining is the imbalanced distribution 
of PM10 concentrations. The dataset often 
contains: 

- Long periods of low PM10 concentrations, 
making it difficult for the model to learn about 
extreme pollution events. 

- Short but critical high PM10 peaks, typically 
occurring after blasting, excavation, and material 
transport activities. 

- Underrepresentation of extreme values, 
leading machine learning models to favor 
predicting low PM10 levels while underestimating 
high pollution episodes. 

Standard machine learning models tend to 
learn patterns from majority class (low PM10 
levels) and fail to accurately predict rare but high-
impact pollution spikes. Furthermore, 
underestimating PM10 peaks can lead to incorrect 
air quality warnings, affecting mine safety and 
regulatory compliance. These led to imbalanced 
PM10 data is a problem in this study. 

Normally, Synthetic Minority Over-sampling 
Technique (SMOTE) is often used for this task. 
However, SMOTE is designed for classification 
problems, where the target variable is categorical 
(e.g., "low PM10" vs. "high PM10"). In this study, 
PM10 dataset is a time-series dataset, and PM10 is a 
continuous variable, meaning we are dealing with 
a regression problem, not classification. In 
addition, SMOTE generates synthetic samples by 

interpolating between existing minority-class 
points, but it is not optimized for continuous 
variables with complex distributions. Besides, 
applying SMOTE to regression problems may 
create unrealistic PM10 values that do not align 
with physical and environmental constraints. 

To overcome these limitations, Synthetic 
Minority Over-sampling for Regression (SMOGN) 
was used. Unlike SMOTE, SMOGN is designed for 
regression problems, allowing it to generate 
synthetic PM10 values while preserving the 
underlying distribution of the data. 

SMOGN works by generating synthetic PM10 
values in underrepresented regions of the dataset, 
ensuring that the model can learn to predict both 
common (low PM10) and rare (high PM10) events. 
To do this, SMOGN was conducted through the 
following steps: 

Step 1: Identify imbalanced regions 
- The dataset is analyzed to determine which 

PM10 values are underrepresented. 
- Typically, extreme high PM10 values (top 5-

10% of the dataset) are underrepresented. 
Step 2: Compute distance weights 
- SMOGN assigns a higher weight to rare PM10 

values to ensure that they are oversampled. 
- Distance metrics (e.g., Euclidean distance) 

are used to identify similar samples. 
Step 3: Generate synthetic PM10 values 
- New PM10 values are generated by 

interpolating between real observations in the 
minority range (high PM10 levels). 

- This process creates realistic synthetic PM10 
values that follow the distribution of actual 
measurements. 

Step 4: Combine synthetic and original data 
- The new synthetic PM10 values are merged 

with the original dataset, creating a balanced 
distribution. 

To illustrate the effect of SMOGN, we compare 
PM10 distributions before and after applying 
SMOGN, as shown in Table 3.

Table 3. PM10 distribution before and after SMOGN. 

PM10 range (µg/m³) Before SMOGN (Sample count) After SMOGN (Sample count) 
Low (0-50) 2423 875 
Moderate (50-100) 630 1102 
High (100-150) 183 421 
Very high (> 150) 94 211 
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Observations from the data balancing 
process in Table 3 showed that the largest 
reduction occurred in the low PM10 range, where 
the sample count dropped significantly from 2423 
to 875. This suggests that SMOGN has performed 
under-sampling to balance the dataset, as low 
PM10 values were initially dominant. This also 
prevents the model from being biased toward 
predicting lower PM10 levels, improving its ability 
to forecast higher values. 

The moderate PM10 range (50÷100 µg/m³) 
increased from 630 to 1102 samples, meaning 
SMOGN generated synthetic samples to make this 
category more comparable in size to others. The 
high PM10 range (100÷150 µg/m³) increased from 
183 to 421, nearly doubling in size. The very high 
PM10 range (>150 µg/m³) grew from 94 to 211, 

ensuring that extreme pollution events are 
adequately represented in the dataset. 

Before using SMOGN, the dataset was highly 
imbalanced, with low PM10 values (0÷50 µg/m³) 
dominating, while very high values (>150 µg/m³) 
were underrepresented. A machine learning 
model trained on this dataset would likely 
struggle to predict high PM10 values accurately 
because of the lack of sufficient high PM10 
samples. 

After using SMOGN, the dataset is now better 
balanced, ensuring the model learns to predict 
PM10 levels across a broader range, not just in low 
concentrations. In addition, this technique also 
improved forecasting accuracy, particularly for 
higher PM10 events that are critical for air quality 
management in open-pit mines, as shown in 
Figure 8. 

 
Figure 8. Comparison between before and after SMOGN in this study. 
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4.2. Feature importance analysis using 
Random Forest 

Once the dataset was balanced, the Random 
Forest was applied to analyze feature important, 
aiming to reduce the number of variables used, 
getting simpler and better model for forecasting 
PM10 at the Sin Quyen copper mine. The results 
are shown in Figure 9. The results indicated that 
the following low importance features should be 
removed: 'PC1', 'PC2', 'PC3', 'PC4', 'PC5', 'PC6', 
'PC7', 'PC8', 'PC10'. Finally, only PC9 was used to 
forecasting PM10 in this study. 

4.3. Development of the forecast models 

This study evaluates three machine learning 
models and three statistical models for PM₁₀ 
forecasting. For Machine Learning Models, 
Random Forest (RF), XGBoost (Extreme Gradient 
Boosting), and LightGBM (Light Gradient 
Boosting Machine) were developed. Meanwhile, 
ARIMA (AutoRegressive Integrated Moving 
Average), SARIMA (Seasonal ARIMA), and Holt-
Winters Exponential Smoothing are the statistical 
models used in this study for comparison. 

To do this, five input variables were selected 
to forecast PM10, including wind speed, wind 
direction, humidity, temperature, atmospheric 

pressure. The selection of five meteorological 
input variables—humidity, temperature, 
pressure, wind direction, and wind speed—for 
PM10 forecasting in this study is based on their 
well-established influence on particulate matter 
behavior in open-pit mining environments. These 
variables were chosen after an extensive review 
of previous literature and domain-specific 
knowledge of dust dynamics in mining 
operations. Specifically: 

- Wind speed and wind direction directly 
control the dispersion and transport pathways of 
airborne PM10 particles. High wind speeds can 
resuspend settled dust and carry pollutants over 
long distances, while wind direction determines 
the trajectory of dust plumes. 

- Humidity affects particle agglomeration and 
settling. Low humidity typically enhances dust 
suspension, while high humidity promotes 
coagulation and deposition of particles. 

- Temperature influences atmospheric 
stability and vertical mixing of air layers. It also 
interacts with humidity to determine the 
likelihood of dust re-entrainment. 

- Atmospheric pressure is related to air 
density and influences the vertical movement of 
dust. Sudden drops in pressure may correlate 
with increased turbulence and dust emissions.

 
Figure 9. Feature important analysis of the dataset used. 
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These five variables were not only chosen for 
their scientific relevance but also because they are 
continuously monitored at the mine site and 
readily available in real-time, making them ideal 
for integration into a real-time forecasting system. 
In addition, prior studies have demonstrated that 
these meteorological factors are among the most 
important predictors in air quality forecasting 
models using tree-based machine learning 
methods such as RF, XGBoost, and LightGBM. 

Finally, feature importance analysis 
conducted as part of this study confirmed the 
predictive relevance of these variables, further 
justifying their inclusion in the final forecasting 
models. 

For developing the RF-PM10Hybrid model, an 
ensemble model using multiple decision trees. 
This model handles non-linearity well and is 
robust to noisy data. The RF-PM10Hybrid model 
was trained with 200 trees, max depth = 15. 

For the XGBoost, a boosting algorithm that 
builds trees sequentially, which was trained with 
500 estimators, learning rate = 0.05 and max 
depth = 6. Early stopping was used to prevent 
overfitting. 

For the LightGBM model, it was optimized for 
speed and efficiency. It handles large datasets 
better than traditional boosting models, and was 
configured with 500 estimators, max depth = 10. 

For the development of the ARIMA model, it 
was trained with order (2,1,2) (auto-selected 
using AIC criterion). 

SARIMA, an extension of ARIMA that 
accounts for seasonality. The seasonal order was 
set to (1,1,1,24) to capture daily patterns in this 
study. 

Holt-Winters Exponential Smoothing can 
capture trend and seasonality in time-series data. 

It was configured with additive trend and 
seasonal components. 

Before training the models, the dataset was 
split into two parts with 80% of the whole dataset 
was used to train the models, and the remaining 
time stamps (20%) were used for testing the 
performance of the trained models. 

RMSE, MAE and MAPE were calculated to 
evaluate the models’ performance, as shown in 
Table 4. 

The machine learning models—RF-
PM10Hybrid, XGBoost, and LightGBM—
demonstrated superior performance compared to 
traditional time-series models. RF-PM10Hybrid 
achieved the lowest RMSE (5.791) and MAE 
(3.518) on the testing dataset, making it the most 
accurate model for predicting PM₁₀ fluctuations. 
LightGBM also performed well, with RMSE of 
6.172 and MAE of 3.770, confirming the 
effectiveness of boosting techniques in handling 
complex air quality datasets. 

Among the machine learning models, 
XGBoost had a slightly higher RMSE (8.293) on 
the testing dataset, indicating slightly lower 
generalization performance compared to RF-
PM10Hybrid and LightGBM. However, XGBoost 
maintained a relatively stable RMSE and MAE 
between the training and testing datasets, 
suggesting less overfitting compared to 
LightGBM, which showed a more substantial 
RMSE gap between training (41.985) and testing 
(6.172). 

RF-PM10Hybrid not only outperformed all 
other models on the testing dataset but also 
maintained stability between training and testing 
performance, reducing the risk of overfitting. The 
MAPE of RF-PM10Hybrid (11.70%) further 
confirms its reliability in predicting air quality 

Table 4. Performance of the developed models for forecasting PM10 at the Sin Quyen open-pit copper 
mine. 

Model 
Training dataset Testing dataset 
RMSE MAE MAPE RMSE MAE MAPE 

RF-PM10Hybrid 11.981 7.329 10.96% 5.791 3.518 11.70% 
XGBoost 24.032 12.935 18.42% 8.293 3.953 13.18% 
LightGBM 41.985 15.367 18.60% 6.172 3.770 12.57% 
ARIMA 129.780 37.597 57.27% 4.233 4.208 14.03% 
SARIMA 131.516 39.433 65.69% 11.070 8.800 29.32% 
Holt-Winters 131.077 41.752 68.05% 13.108 10.224 34.07% 
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variations in the open-pit mining environment. 
The success of RF-PM10Hybrid can be attributed 
to its integration of feature engineering 
techniques (lag features, rolling statistics, and 
interaction terms), PCA for dimensionality 
reduction, and SMOGN for handling data 
imbalance. 

The statistical models—ARIMA, SARIMA, and 
Holt-Winters—performed significantly worse 
than machine learning models. ARIMA and 
SARIMA, in particular, exhibited high RMSE 
values in the training dataset (129.780 and 
131.516, respectively), indicating poor model fit 
to the PM10 data. Additionally, SARIMA produced 
the highest MAPE (29.32%) on the testing dataset, 
reflecting its difficulty in handling PM₁₀ variability 
in open-pit mines. Holt-Winters performed the 
worst overall, with a MAPE of 34.07%, making it 
unsuitable for accurate forecasting in this context. 

The poor performance of ARIMA, SARIMA, 
and Holt-Winters can be attributed to the high 
variability and irregularities in PM10 data, which 
traditional time-series models struggle to capture. 
These models assume stationarity and rely 
heavily on historical trends, whereas machine 
learning models can adapt to non-linear 
relationships and incorporate external 

meteorological variables such as humidity, wind 
speed, and temperature. 

Moreover, the integration of feature 
engineering techniques (lag features, rolling 
statistics, and interaction terms) in machine 
learning models significantly improved their 
forecasting ability. Statistical models, which rely 
solely on past PM10 values without additional 
feature inputs, were unable to match the 
predictive power of ML-based approaches. 

One of the key reasons for the improved 
accuracy of machine learning models was the 
application of SMOGN (Synthetic Minority Over-
sampling Technique for Regression) to handle 
imbalanced PM10 values. Before SMOGN, the 
dataset was heavily skewed toward lower PM10 
concentrations, making it difficult for models to 
accurately predict high PM10 events. After 
applying SMOGN, the distribution of PM10 was 
more balanced, ensuring that the model could 
better learn extreme pollution conditions caused 
by mining activities. 

To visualize the accuracy of the models 
developed, Figure 11 shows the comparison of 
actual and forecasted PM10 on both training and 
testing datasets.

 
(a) 
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The results demonstrate that RF-PM10Hybrid 
is the most effective model for forecasting PM₁₀ in 
open-pit mining environments, achieving the 
lowest RMSE, MAE, and MAPE on the testing 
dataset. The boosting models (XGBoost, 
LightGBM) also outperformed traditional time-
series approaches, confirming the advantages of 
machine learning over statistical forecasting 
techniques. 

These findings suggest that integrating 
advanced feature engineering, PCA for 
dimensionality reduction, and SMOGN for data 
balancing significantly enhances forecasting 
accuracy, making RF-PM10Hybrid a valuable tool 
for real-time air quality management and 
environmental risk mitigation in open-pit mines. 

5. Conclusion and future work 

This study developed and evaluated machine 
learning and statistical models for forecasting 
PM₁₀ concentrations at the Sin Quyen open-pit 
copper mine, utilizing advanced feature 
engineering, Principal Component Analysis (PCA), 
and Synthetic Minority Over-sampling technique 

for regression (SMOGN) to improve prediction 
accuracy. The results demonstrated that machine 
learning models significantly outperformed 
traditional time-series models in terms of RMSE, 
MAE, and MAPE. Among the tested models, RF-
PM10Hybrid achieved the best overall 
performance, demonstrating strong predictive 
capability with the lowest RMSE (5.791) and MAE 
(3.518) on the testing dataset, followed closely by 
LightGBM and XGBoost. Conversely, traditional 
statistical models (ARIMA, SARIMA, and Holt-
Winters) struggled to capture the complex 
variability of PM10 concentrations, showing poor 
generalization and higher forecasting errors. The 
new findings of this study indicated that machine 
learning models (RF-PM10Hybrid, XGBoost, 
LightGBM) significantly outperformed ARIMA, 
SARIMA, and Holt-Winters in PM10 forecasting. 
RF-PM10Hybrid emerged as the best model due to 
its ability to handle non-linearity, feature 
interactions, and high-dimensional 
meteorological data. Feature engineering, 
including lag features, rolling statistics, and 
interaction terms, enhanced the model's 

 
(b) 

Figure 11. Comparison of actual and forecasted PM10 on the training and testing datasets, (a) 
Training dataset; (b) Testing dataset. 
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predictive accuracy. PCA improved 
computational efficiency by reducing 
dimensionality while retaining over 90% of data 
variance. SMOGN effectively balanced the dataset, 
improving model performance in forecasting high 
PM10 levels associated with mining activities. 
Boosting models (XGBoost, LightGBM) 
generalized well, demonstrating strong 
forecasting capabilities across both training and 
testing datasets. These findings highlight the 
potential of machine learning-based approaches 
for real-time PM10 monitoring, providing an 
effective decision-support tool for mine 
operators, environmental policymakers, and 
regulatory agencies. 

While this study has demonstrated promising 
results in PM10 forecasting for open-pit mines, 
there are several areas for future research and 
improvement: 

- Future models should consider real-time 
meteorological data (e.g., humidity, wind 
patterns, temperature fluctuations) with finer 
resolution to improve predictive accuracy. 

- Recurrent Neural Networks (RNNs), Long 
Short-Term Memory (LSTM), and Transformer-
based architectures can be explored to improve 
long-term forecasting. 

- Future research can integrate traditional 
dispersion models (e.g., AERMOD) with machine 
learning approaches to enhance physical 
interpretability. 

- Hybrid models combining statistical 
methods (e.g., SARIMA) with machine learning 
(e.g., RF-PM10Hybrid) may further improve 
forecasting performance. 
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